Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.191
Filtrar
1.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622339

RESUMO

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Assuntos
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenômica , Melhoramento Vegetal
2.
Genome Biol ; 25(1): 97, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622738

RESUMO

BACKGROUND: As most viruses remain uncultivated, metagenomics is currently the main method for virus discovery. Detecting viruses in metagenomic data is not trivial. In the past few years, many bioinformatic virus identification tools have been developed for this task, making it challenging to choose the right tools, parameters, and cutoffs. As all these tools measure different biological signals, and use different algorithms and training and reference databases, it is imperative to conduct an independent benchmarking to give users objective guidance. RESULTS: We compare the performance of nine state-of-the-art virus identification tools in thirteen modes on eight paired viral and microbial datasets from three distinct biomes, including a new complex dataset from Antarctic coastal waters. The tools have highly variable true positive rates (0-97%) and false positive rates (0-30%). PPR-Meta best distinguishes viral from microbial contigs, followed by DeepVirFinder, VirSorter2, and VIBRANT. Different tools identify different subsets of the benchmarking data and all tools, except for Sourmash, find unique viral contigs. Performance of tools improved with adjusted parameter cutoffs, indicating that adjustment of parameter cutoffs before usage should be considered. CONCLUSIONS: Together, our independent benchmarking facilitates selecting choices of bioinformatic virus identification tools and gives suggestions for parameter adjustments to viromics researchers.


Assuntos
Benchmarking , Vírus , Metagenoma , Ecossistema , Metagenômica/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Vírus/genética
3.
Genome Biol ; 25(1): 92, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605401

RESUMO

BACKGROUND: In the metagenomic assembly of a microbial community, abundant species are often thought to assemble well given their deeper sequencing coverage. This conjuncture is rarely tested or evaluated in practice. We often do not know how many abundant species are missing and do not have an approach to recover them. RESULTS: Here, we propose k-mer based and 16S RNA based methods to measure the completeness of metagenome assembly. We show that even with PacBio high-fidelity (HiFi) reads, abundant species are often not assembled, as high strain diversity may lead to fragmented contigs. We develop a novel reference-free algorithm to recover abundant metagenome-assembled genomes (MAGs) by identifying circular assembly subgraphs. Complemented with a reference-free genome binning heuristics based on dimension reduction, the proposed method rescues many abundant species that would be missing with existing methods and produces competitive results compared to those state-of-the-art binners in terms of total number of near-complete genome bins. CONCLUSIONS: Our work emphasizes the importance of metagenome completeness, which has often been overlooked. Our algorithm generates more circular MAGs and moves a step closer to the complete representation of microbial communities.


Assuntos
Metagenoma , Microbiota , Microbiota/genética , Algoritmos , Bactérias/genética , Metagenômica/métodos
4.
Front Cell Infect Microbiol ; 14: 1378112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567023

RESUMO

Background: Infection is the main cause of death for patients after allogeneic hematopoietic stem cell transplantation (HSCT). However, pathogen profiles still have not been reported in detail due to their heterogeneity caused by geographic region. Objective: To evaluate the performance of metagenomic next-generation sequencing (mNGS) and summarize regional pathogen profiles of infected patients after HSCT. Methods: From February 2021 to August 2022, 64 patients, admitted to the Department of Hematology of The First Hospital of Jilin University for HSCT and diagnosed as suspected infections, were retrospectively enrolled. Results: A total of 38 patients were diagnosed as having infections, including bloodstream (n =17), pulmonary (n =16), central nervous system (CNS) (n =4), and chest (n =1) infections. Human betaherpesvirus 5 (CMV) was the most common pathogen in both bloodstream (n =10) and pulmonary (n =8) infections, while CNS (n =2) and chest (n =1) infections were mainly caused by Human gammaherpesvirus 4 (EBV). For bloodstream infection, Mycobacterium tuberculosis complex (n =3), Staphylococcus epidermidis (n =1), and Candida tropicalis (n =1) were also diagnosed as causative pathogens. Furthermore, mNGS combined with conventional tests can identify more causative pathogens with high sensitivity of 82.9% (95% CI 70.4-95.3%), and the total coincidence rate can reach up to 76.7% (95% CI 64.1-89.4%). Conclusions: Our findings emphasized the importance of mNGS in diagnosing, managing, and ruling out infections, and an era of more rapid, independent, and impartial diagnosis of infections after HSCT can be expected.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Estudos Retrospectivos , China , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sequenciamento de Nucleotídeos em Larga Escala , Candida tropicalis , Herpesvirus Humano 4 , Metagenômica , Sensibilidade e Especificidade
6.
Microbiome ; 12(1): 67, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561814

RESUMO

Understanding the characteristics and structure of populations is fundamental to comprehending ecosystem processes and evolutionary adaptations. While the study of animal and plant populations has spanned a few centuries, microbial populations have been under scientific scrutiny for a considerably shorter period. In the ocean, analyzing the genetic composition of microbial populations and their adaptations to multiple niches can yield important insights into ecosystem function and the microbiome's response to global change. However, microbial populations have remained elusive to the scientific community due to the challenges associated with isolating microorganisms in the laboratory. Today, advancements in large-scale metagenomics and metatranscriptomics facilitate the investigation of populations from many uncultured microbial species directly from their habitats. The knowledge acquired thus far reveals substantial genetic diversity among various microbial species, showcasing distinct patterns of population differentiation and adaptations, and highlighting the significant role of selection in structuring populations. In the coming years, population genomics is expected to significantly increase our understanding of the architecture and functioning of the ocean microbiome, providing insights into its vulnerability or resilience in the face of ongoing global change. Video Abstract.


Assuntos
Ecossistema , Microbiota , Animais , Microbiota/genética , Oceanos e Mares , Metagenômica
7.
Nat Commun ; 15(1): 2880, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570504

RESUMO

Deciphering the relationship between a gene and its genomic context is fundamental to understanding and engineering biological systems. Machine learning has shown promise in learning latent relationships underlying the sequence-structure-function paradigm from massive protein sequence datasets. However, to date, limited attempts have been made in extending this continuum to include higher order genomic context information. Evolutionary processes dictate the specificity of genomic contexts in which a gene is found across phylogenetic distances, and these emergent genomic patterns can be leveraged to uncover functional relationships between gene products. Here, we train a genomic language model (gLM) on millions of metagenomic scaffolds to learn the latent functional and regulatory relationships between genes. gLM learns contextualized protein embeddings that capture the genomic context as well as the protein sequence itself, and encode biologically meaningful and functionally relevant information (e.g. enzymatic function, taxonomy). Our analysis of the attention patterns demonstrates that gLM is learning co-regulated functional modules (i.e. operons). Our findings illustrate that gLM's unsupervised deep learning of the metagenomic corpus is an effective and promising approach to encode functional semantics and regulatory syntax of genes in their genomic contexts and uncover complex relationships between genes in a genomic region.


Assuntos
Aprendizado de Máquina , Semântica , Filogenia , Óperon , Proteínas , Metagenômica
8.
PLoS Genet ; 20(4): e1011218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557755

RESUMO

Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 µm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.


Assuntos
Clorófitas , Vírus Gigantes , Vírus Gigantes/genética , Filogenia , Genoma Viral/genética , Clorófitas/genética , Metagenômica , Bactérias/genética
9.
Health Secur ; 22(2): 93-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38608237

RESUMO

To better identify emerging or reemerging pathogens in patients with difficult-to-diagnose infections, it is important to improve access to advanced molecular testing methods. This is particularly relevant for cases where conventional microbiologic testing has been unable to detect the pathogen and the patient's specimens test negative. To assess the availability and utility of such testing for human clinical specimens, a literature review of published biomedical literature was conducted. From a corpus of more than 4,000 articles, a set of 34 reports was reviewed in detail for data on where the testing was being performed, types of clinical specimens tested, pathogen agnostic techniques and methods used, and results in terms of potential pathogens identified. This review assessed the frequency of advanced molecular testing, such as metagenomic next generation sequencing that has been applied to clinical specimens for supporting clinicians in caring for difficult-to-diagnose patients. Specimen types tested were from cerebrospinal fluid, respiratory secretions, and other body tissues and fluids. Publications included case reports and series, and there were several that involved clinical trials, surveillance studies, research programs, or outbreak situations. Testing identified both known human pathogens (sometimes in new sites) and previously unknown human pathogens. During this review, there were no apparent coordinated efforts identified to develop regional or national reports on emerging or reemerging pathogens. Therefore, development of a coordinated sentinel surveillance system that applies advanced molecular methods to clinical specimens which are negative by conventional microbiological diagnostic testing would provide a foundation for systematic characterization of emerging and underdiagnosed pathogens and contribute to national biodefense strategy goals.


Assuntos
Técnicas de Diagnóstico Molecular , Saúde Pública , Humanos , Surtos de Doenças/prevenção & controle , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala
10.
Food Microbiol ; 121: 104493, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637066

RESUMO

Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs). Notably, nanopore long-read sequencing provides more accurate bacterial taxonomic classification in comparison to short-read sequencing. Here, we revealed the impact of food types and attributes (origin, retail place, and food processing methods) on microbial communities and the AMR profile using nanopore metagenomic sequencing. We analyzed a total of 260 food products, including raw meat, sashimi, and ready-to-eat (RTE) vegetables. Clostridium botulinum, Acinetobacter baumannii, and Vibrio parahaemolyticus were identified as the top three foodborne pathogens in raw meat and sashimi. Importantly, even with low pathogen abundance, higher percentages of samples containing carbapenem and cephalosporin resistance genes were identified in chicken and RTE vegetables, respectively. In parallel, our results demonstrated that fresh, peeled, and minced foods exhibited higher levels of pathogenic bacteria. In conclusion, this comprehensive study offers invaluable data that can contribute to food safety assessments and serve as a basis for quality indicators.


Assuntos
Anti-Infecciosos , Sequenciamento por Nanoporos , Microbiologia de Alimentos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias/genética , Metagenômica
11.
Food Microbiol ; 121: 104520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637082

RESUMO

Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Cerveja/microbiologia , Bactérias/genética , Plasmídeos , Saccharomyces/genética , Metagenoma , Metagenômica , Enterobacteriaceae/genética
12.
Mycopathologia ; 189(3): 34, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637353

RESUMO

Central nervous system (CNS) infections represent a challenge due to the complexities associated with their diagnosis and treatment, resulting in a high incidence rate and mortality. Here, we presented a case of CNS mixed infection involving Candida and human cytomegalovirus (HCMV), successfully diagnosed through macrogenomic next-generation sequencing (mNGS) in China. A comprehensive review and discussion of previously reported cases were also provided. Our study emphasizes the critical role of early pathogen identification facilitated by mNGS, underscoring its significance. Notably, the integration of mNGS with traditional methods significantly enhances the diagnostic accuracy of CNS infections. This integrated approach has the potential to provide valuable insights for clinical practice, facilitating early diagnosis, allowing for treatment adjustments, and ultimately, improving the prognosis for patients with CNS infections.


Assuntos
Infecções do Sistema Nervoso Central , Coinfecção , Humanos , Sistema Nervoso Central , Diagnóstico Precoce , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Infecções do Sistema Nervoso Central/diagnóstico , Sensibilidade e Especificidade , Estudos Retrospectivos
13.
Front Cell Infect Microbiol ; 14: 1230650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638824

RESUMO

Objective: To evaluate the diagnostic value of metagenomic sequencing technology based on Illumina and Nanopore sequencing platforms for patients with suspected lower respiratory tract infection whose pathogen could not be identified by conventional microbiological tests. Methods: Patients admitted to the Respiratory and Critical Care Medicine in Shanghai Ruijin Hospital were retrospectively studied from August 2021 to March 2022. Alveolar lavage or sputum was retained in patients with clinically suspected lower respiratory tract infection who were negative in conventional tests. Bronchoalveolar lavage fluid (BALF) samples were obtained using bronchoscopy. Sputum samples were collected, while BALF samples were not available due to bronchoscopy contraindications. Samples collected from enrolled patients were simultaneously sent for metagenomic sequencing on both platforms. Results: Thirty-eight patients with suspected LRTI were enrolled in this study, consisting of 36 parts of alveolar lavage and 2 parts of sputum. According to the infection diagnosis, 31 patients were confirmed to be infected with pathogens, while 7 patients were diagnosed with non-infectious disease. With regard to the diagnosis of infectious diseases, the sensitivity and specificity of Illumina and Nanopore to diagnose infection in patients were 80.6% vs. 93.5% and 42.9 vs. 28.6%, respectively. In patients diagnosed with bacterial, Mycobacterium, and fungal infections, the positive rates of Illumina and Nanopore sequencer were 71.4% vs. 78.6%, 36.4% vs. 90.9%, and 50% vs. 62.5%, respectively. In terms of pathogen diagnosis, the sensitivity and specificity of pathogens detected by Illumina and Nanopore were 55.6% vs. 77.8% and 42.9% vs. 28.6%, respectively. Among the patients treated with antibiotics in the last 2 weeks, 61.1% (11/18) and 77.8% (14/18) cases of pathogens were accurately detected by Illumina and Nanopore, respectively, among which 8 cases were detected jointly. The consistency between Illumina and diagnosis was 63.9% (23/36), while the consistency between Nanopore and diagnosis was 83.3% (30/36). Between Illumina and Nanopore sequencing methods, the consistency ratio was 55% (22/42) based on pathogen diagnosis. Conclusion: Both platforms play a certain value in infection diagnosis and pathogen diagnosis of CMT-negative suspected LRTI patients, providing a theoretical basis for clinical accurate diagnosis and symptomatic treatment. The Nanopore platform demonstrated potential advantages in the identification of Mycobacterium and could further provide another powerful approach for patients with suspected Mycobacterium infection.


Assuntos
Sequenciamento por Nanoporos , Infecções Respiratórias , Humanos , Estudos Retrospectivos , China , Infecções Respiratórias/diagnóstico , Antibacterianos , Líquido da Lavagem Broncoalveolar , Metagenômica , Sequenciamento de Nucleotídeos em Larga Escala , Sensibilidade e Especificidade
14.
Front Cell Infect Microbiol ; 14: 1329235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638828

RESUMO

The metagenomic next-generation sequencing (mNGS) method is preferred for genotyping useful for the identification of organisms, illumination of metabolic pathways, and determination of microbiota. It can accurately obtain all the nucleic acid information in the test sample. Anthrax is one of the most important zoonotic diseases, infecting mainly herbivores and occasionally humans. The disease has four typical clinical forms, cutaneous, gastrointestinal, inhalation, and injection, all of which may result in sepsis or meningitis, with cutaneous being the most common form. Here, we report a case of cutaneous anthrax diagnosed by mNGS in a butcher. Histopathology of a skin biopsy revealed PAS-positive bacilli. Formalin-fixed paraffin-embedded (FFPE) tissue sample was confirmed the diagnosis of anthrax by mNGS. He was cured with intravenous penicillin. To our knowledge, this is the first case of cutaneous anthrax diagnosed by mNGS using FFPE tissue. mNGS is useful for identifying pathogens that are difficult to diagnose with conventional methods, and FFPE samples are simple to manage. Compared with traditional bacterial culture, which is difficult to cultivate and takes a long time, mNGS can quickly and accurately help us diagnose anthrax, so that anthrax can be controlled in a timely manner and prevent the outbreak of epidemic events.


Assuntos
Antraz , Dermatopatias Bacterianas , Masculino , Humanos , Antraz/diagnóstico , Inclusão em Parafina , Formaldeído/uso terapêutico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Sensibilidade e Especificidade
15.
Front Cell Infect Microbiol ; 14: 1377012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638832

RESUMO

It is becoming increasingly clear that the human microbiota, also known as "the hidden organ", possesses a pivotal role in numerous processes involved in maintaining the physiological functions of the host, such as nutrient extraction, biosynthesis of bioactive molecules, interplay with the immune, endocrine, and nervous systems, as well as resistance to the colonization of potential invading pathogens. In the last decade, the development of metagenomic approaches based on the sequencing of the bacterial 16s rRNA gene via Next Generation Sequencing, followed by whole genome sequencing via third generation sequencing technologies, has been one of the great advances in molecular biology, allowing a better profiling of the human microbiota composition and, hence, a deeper understanding of the importance of microbiota in the etiopathogenesis of different pathologies. In this scenario, it is of the utmost importance to comprehensively characterize the human microbiota in relation to disease pathogenesis, in order to develop novel potential treatment or preventive strategies by manipulating the microbiota. Therefore, this perspective will focus on the progress, challenges, and promises of the current and future technological approaches for microbiome profiling and analysis.


Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Metagenoma , Metagenômica
16.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38620144

RESUMO

In this perspective, we explore the transformative impact and inherent limitations of metagenomics and single-cell genomics on our understanding of microbial diversity and their integration into the Tree of Life. We delve into the key challenges associated with incorporating new microbial lineages into the Tree of Life through advanced phylogenomic approaches. Additionally, we shed light on enduring debates surrounding various aspects of the microbial Tree of Life, focusing on recent advances in some of its deepest nodes, such as the roots of bacteria, archaea, and eukaryotes. We also bring forth current limitations in genome recovery and phylogenomic methodology, as well as new avenues of research to uncover additional key microbial lineages and resolve the shape of the Tree of Life.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Genômica , Metagenômica/métodos , Filogenia
17.
BMC Bioinformatics ; 25(Suppl 1): 153, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627615

RESUMO

BACKGROUND: With the rapid increase in throughput of long-read sequencing technologies, recent studies have explored their potential for taxonomic classification by using alignment-based approaches to reduce the impact of higher sequencing error rates. While alignment-based methods are generally slower, k-mer-based taxonomic classifiers can overcome this limitation, potentially at the expense of lower sensitivity for strains and species that are not in the database. RESULTS: We present MetageNN, a memory-efficient long-read taxonomic classifier that is robust to sequencing errors and missing genomes. MetageNN is a neural network model that uses short k-mer profiles of sequences to reduce the impact of distribution shifts on error-prone long reads. Benchmarking MetageNN against other machine learning approaches for taxonomic classification (GeNet) showed substantial improvements with long-read data (20% improvement in F1 score). By utilizing nanopore sequencing data, MetageNN exhibits improved sensitivity in situations where the reference database is incomplete. It surpasses the alignment-based MetaMaps and MEGAN-LR, as well as the k-mer-based Kraken2 tools, with improvements of 100%, 36%, and 23% respectively at the read-level analysis. Notably, at the community level, MetageNN consistently demonstrated higher sensitivities than the previously mentioned tools. Furthermore, MetageNN requires < 1/4th of the database storage used by Kraken2, MEGAN-LR and MMseqs2 and is > 7× faster than MetaMaps and GeNet and > 2× faster than MEGAN-LR and MMseqs2. CONCLUSION: This proof of concept work demonstrates the utility of machine-learning-based methods for taxonomic classification using long reads. MetageNN can be used on sequences not classified by conventional methods and offers an alternative approach for memory-efficient classifiers that can be optimized further.


Assuntos
Metagenômica , Viverridae , Animais , Metagenômica/métodos , Redes Neurais de Computação , Metagenoma , Aprendizado de Máquina , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
18.
Front Immunol ; 15: 1378512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629078

RESUMO

Python for Population Genomics (PyPop) is a software package that processes genotype and allele data and performs large-scale population genetic analyses on highly polymorphic multi-locus genotype data. In particular, PyPop tests data conformity to Hardy-Weinberg equilibrium expectations, performs Ewens-Watterson tests for selection, estimates haplotype frequencies, measures linkage disequilibrium, and tests significance. Standardized means of performing these tests is key for contemporary studies of evolutionary biology and population genetics, and these tests are central to genetic studies of disease association as well. Here, we present PyPop 1.0.0, a new major release of the package, which implements new features using the more robust infrastructure of GitHub, and is distributed via the industry-standard Python Package Index. New features include implementation of the asymmetric linkage disequilibrium measures and, of particular interest to the immunogenetics research communities, support for modern nomenclature, including colon-delimited allele names, and improvements to meta-analysis features for aggregating outputs for multiple populations. Code available at: https://zenodo.org/records/10080668 and https://github.com/alexlancaster/pypop.


Assuntos
Metagenômica , Software , Genética Populacional , Haplótipos , Genótipo
19.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630611

RESUMO

The ever-decreasing cost of sequencing and the growing potential applications of metagenomics have led to an unprecedented surge in data generation. One of the most prevalent applications of metagenomics is the study of microbial environments, such as the human gut. The gut microbiome plays a crucial role in human health, providing vital information for patient diagnosis and prognosis. However, analysing metagenomic data remains challenging due to several factors, including reference catalogues, sparsity and compositionality. Deep learning (DL) enables novel and promising approaches that complement state-of-the-art microbiome pipelines. DL-based methods can address almost all aspects of microbiome analysis, including novel pathogen detection, sequence classification, patient stratification and disease prediction. Beyond generating predictive models, a key aspect of these methods is also their interpretability. This article reviews DL approaches in metagenomics, including convolutional networks, autoencoders and attention-based models. These methods aggregate contextualized data and pave the way for improved patient care and a better understanding of the microbiome's key role in our health.


Assuntos
Aprendizado Profundo , Microbioma Gastrointestinal , Microbiota , Humanos , Metagenoma , Metagenômica/métodos
20.
Sci Adv ; 10(16): eadh3425, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630810

RESUMO

Drosophila melanogaster is a widely used model organism for studying environmental adaptation. However, the genetic diversity of populations in Asia is poorly understood, leaving a notable gap in our knowledge of the global evolution and adaptation of this species. We sequenced genomes of 292 D. melanogaster strains from various ecological settings in China and analyzed them along with previously published genome sequences. We have identified six global genetic ancestry groups, despite the presence of widespread genetic admixture. The strains from China represent a unique ancestry group, although detectable differentiation exists among populations within China. We deciphered the global migration and demography of D. melanogaster, and identified widespread signals of adaptation, including genetic changes in response to insecticides. We validated the effects of insecticide resistance variants using population cage trials and deep sequencing. This work highlights the importance of population genomics in understanding the genetic underpinnings of adaptation, an effort that is particularly relevant given the deterioration of ecosystems.


Assuntos
Drosophila melanogaster , Metagenômica , Animais , Drosophila melanogaster/genética , Variação Genética , Ecossistema , África Subsaariana , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...